Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 644424, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069608

RESUMO

The function of floral organ identity genes, APETALA1/2/3, PISTILLATA, AGAMOUS, and SEPALLATA1/2/3, in flower development is highly conserved across angiosperms. Emerging evidence shows that these genes also play important roles in the development of the fruit that originates from floral organs following pollination and fertilization. However, their roles in fruit development may vary significantly between species depending on the floral organ types contributing to the fruit tissues. Fruits of the Rosaceae family develop from different floral organ types depending on the species, for example, peach fruit flesh develops from carpellary tissues, whereas apple and strawberry fruit flesh develop from extra-carpellary tissues, the hypanthium and receptacle, respectively. In this review, we summarize recent advances in understanding floral organ gene function in Rosaceae fruit development and analyze the similarities and diversities within this family as well as between Rosaceae and the model plant species Arabidopsis and tomato. We conclude by suggesting future research opportunities using genomics resources to rapidly dissect gene function in this family of perennial plants.

2.
Microrna ; 8(2): 166-170, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30501607

RESUMO

BACKGROUND: The discovery that a plant microRNA (miRNAs) from rice (Oryza sativa miR168a) can modify post-transcriptional expression of the mammalian. Low-Density Lipoprotein Receptor Adaptor Protein 1 (LDLRAP1) gene highlights the potential for cross-kingdom miRNAmRNA interactions. OBJECTIVE: To investigate whether common variants of the conserved miR168a family have the capability for similar cross-kingdom regulatory functions, we selected sequences from three dietary plant sources: rice (Oryza sativa), tomato (Solanum lycopersicum), apple (Malus domestica) and compared their ability to regulate human LDLRAP1 expression. METHODS: Target prediction software intaRNA and RNAhybrid were used to analyze and calculate the energy and alignment score between the miR168a variants and human LDLRAP1 mRNA. An in vitro cell-based Dual-Luciferase® Reporter Assay (pmirGLO, Promega), was then used to validate the miRNA-mRNA interaction experimentally. RESULTS: Computational analyses revealed that a single nucleotide difference at position 14 (from the 5' end of the miRNA) creates a G:U wobble in the miRNA-mRNA duplex formed by tomato and apple miR168a variants. This G:U wobble had only a small effect on the free energy score (-33.8-34.7 kcal/mol). However, despite reasonable hybridization energy scores (<-20 kcal/mol) for all miR168a variants, only the rice miR168a variant lacking a G:U wobble significantly reduced LDLRAP1 transcript expression by 25.8 + 7.3% (p<0.05), as measured by relative luciferase activity. CONCLUSION: In summary, single nucleotide differences at key positions can have a marked influence on regulatory function despite similar predicted energy scores and miRNA-mRNA duplex structures.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação da Expressão Gênica de Plantas/genética , Malus/genética , MicroRNAs/genética , Oryza/genética , Solanum lycopersicum/genética , Biologia Computacional , Inativação Gênica/fisiologia , Humanos , RNA Mensageiro/genética , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...